
MSTM_studio Documentation
Release 1.0.2

Leon Avakyan

Mar 29, 2022

Contents

1 Features 3

2 Contents 5
2.1 Installation . 5
2.2 Manual: GUI . 7
2.3 Manual: Scripting . 17

3 Contacts 43

Bibliography 45

Python Module Index 47

Index 49

i

ii

MSTM_studio Documentation, Release 1.0.2

Python wrapper for multiple sphere T-matrix (MSTM) code and Mie theory to calculate surface plasmon resonance
(SPR) spectrum and fit it to experiment.

Contents 1

http://doi.org/10.1016/j.jqsrt.2011.02.019

MSTM_studio Documentation, Release 1.0.2

2 Contents

CHAPTER 1

Features

• Materials defined from constant expression, from tabulated file or from analytical formula of Rioux et al for
Au-Ag;

• Simple functional contributions (linear, lorentzian, gaussian)

• Mie theory contributions

• MSTM calculations: spectra and near-field intensity

• Fitting of experimental data by any of the mentioned contributions, including combinations

• Interactive graphical user interface

• Flexible Python scripting

3

http://doi.org/10.1002/adom.201300457

MSTM_studio Documentation, Release 1.0.2

4 Chapter 1. Features

CHAPTER 2

Contents

2.1 Installation

2.1.1 Source code

Source code of Python wrapper is available on GitHub <https://github.com/lavakyan/mstm-spectrum>. Stable version
published on PyPi <https://pypi.org/project/mstm-studio/>.

The source code of MSTM is not included and should be obtained from <https://scattport.org/index.php/
light-scattering-software/multiple-particle-scattering/468-mstm>. MSTM studio can be run without MSTM binary,
but with restricted functionality.

For non-spherical particles (currently available only spheroids) the ScatterPy library is used (See Binding with Scat-
terPy).

2.1.2 Linux installation

Install from PyPi:

pip install mstm_studio

On systems without root access:

pip install mstm_studio --user

Running GUI with

python -m mstm_studio

May be required to explicitely specify python version, i.e. use pip3 and python3 in above commands.

Binding with MSTM

MSTM-studio will search for mstm.x binary in ~/bin directory.

5

https://github.com/lavakyan/mstm-spectrum
https://pypi.org/project/mstm-studio/
https://scattport.org/index.php/light-scattering-software/multiple-particle-scattering/468-mstm
https://scattport.org/index.php/light-scattering-software/multiple-particle-scattering/468-mstm

MSTM_studio Documentation, Release 1.0.2

This can be altered by setting of MSTM_BIN environment variable, i.e. in bash:

export $MSTM_BIN=~/my_compiled_mstm/mstm_v3.bin

Note: MSTM can be compiled with gfortran as:

gfortran mpidefs-serial.f90 mstm-intrinsics-v3.0.f90 mstm-modules-v3.0.f90 mstm-main-
→˓v3.0.f90 -O2 -o mstm.x

This is serial compilation, for parallel the file mpidefs-serial.f90 should be replaced. Consult the MSTM
website for details.

2.1.3 Windows installation

The tested way is using Anaconda Python distribution <https://www.anaconda.com/>.

1. Open “Anaconda Prompt”. The new terminal window should pop up.

2. Type in pip install mstm_studio. This may take a while since the dependent code will be downloaded
and installed.

3. Check GUI by typing python -m mstm_studio in Anaconda Prompt or check python scripting by typing
import mstm_studio in python console.

Binding with MSTM

4. Obtain the MSTM binary. Put it to some folder.

5. Setup environmental variable MSTM_BIN to point on the binary. The shell comannd SETX
MSTM_BIN="path_to_your_mstm_bin" will do the temporary setup, which is useful for
making *.cmd scripts. Permanent setup of environemnt variable should be done with graphi-
cal interface, see for example, <https://docs.oracle.com/en/database/oracle/r-enterprise/1.5.1/oread/
creating-and-modifying-environment-variables-on-windows.html>.

Note: If you write *.cmd script to run gui, don’t forget to update PATH variable to point on the Python distribution.
The easist way is to type echo %PATH% in Anaconda Promt, and use the output in your script. Example of GUI
running script is:

@ECHO OFF
PATH=C:\ProgramData\Anaconda3;C:\ProgramData\Anaconda3\Library\mingw-w64\bin;
→˓C:\ProgramData\Anaconda3\Library\usr\bin;C:\ProgramData\Anaconda3\Library\bin;
→˓C:\ProgramData\Anaconda3\Scripts;C:\ProgramData\Anaconda3\bin;
→˓C:\ProgramData\Anaconda3\condabin;%PATH%
set MSTM_BIN="C:\Users\L\Desktop\mstm_studio old\mstm-spectrum\mstm.exe"
python.exe -m mstm_studio
PAUSE

The last command (PAUSE) is put to prevent console windows from closing after program is ended.

2.1.4 Binding with ScatterPy

For calculation of extinction spectra of isolated non-sphericla particle ScatterPy can be used. This library is available
on github <https://github.com/TCvanLeth/ScatterPy> and PiPy repository.

6 Chapter 2. Contents

https://www.anaconda.com/
https://docs.oracle.com/en/database/oracle/r-enterprise/1.5.1/oread/creating-and-modifying-environment-variables-on-windows.html
https://docs.oracle.com/en/database/oracle/r-enterprise/1.5.1/oread/creating-and-modifying-environment-variables-on-windows.html
https://github.com/TCvanLeth/ScatterPy

MSTM_studio Documentation, Release 1.0.2

Installation from PyPi: pip install scatterpy or pip install scatterpy --user

ScatterPy without Numba

ScatterPy requires Numba library for speeding up the calculation. However, it is possible to install without Numba:

1. Download scatterpy source code

2. Edit file scatterpy/special.py. Remove line:

import numba as nb

and add lines:

try:
import numba as nb

except ImportError:
print('WARNING: Numba support is disabled in ScatterPy')

3. Build and install: python setup.py install (Needed setuptools and may be other dev packages)

2.2 Manual: GUI

Interactive graphical interface for calculation and analysis of optical extinction spectra.

2.2.1 Materials

Material can be added from the predefined list:

2.2. Manual: GUI 7

MSTM_studio Documentation, Release 1.0.2

Also the complex number can be typed in here.

The option AlloyAuAg correspond to analytical parametrixation for silver-gold alloys [Rioux2014] and requires the
specification of Au ratio (0 ≤ 𝑥 ≤ 1).

Next button will add material from file with refractive index data stored in column format, i.e.:

lambda n k
0.100 2.8883 1.3062
0.101 2.8735 1.2439
0.101 2.8564 1.1856
...

First column – wavelength in nm or mum, second and third – real and imaginary parts of refractive index.

The refractive index data can be plotted to check sanity:

Cross button deletes the selected material.

2.2.2 Multi-Spheres T-Matrix

Mutli-spheres T-matrix calculations are done by calling the external binary MSTMcode written by Mischenko and
Mackowski. Currently supported are the spectra calculations (extinction, scattering or absorbtion) and near field visu-
alization. Both modes requires specification of the spheres geometry and thier material. GUI provides the following
options:

8 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

Plus button – add new sphere.

Important to specify material label for the sphere.

2.2. Manual: GUI 9

MSTM_studio Documentation, Release 1.0.2

Button with pencil or doulbe-click on a table row – edit selected sphere.

Note: double click on a row in material table allow to change the viewed material color.

Circle-arrows – refresh 3D view.

3D view can be rotated with pressed left mouse button and zoomed in or out with mouse wheel.

Environment material by default is m0. This can be changed using menu:

Cross button deletes the selected sphere.

Calculation modes:

MSTM spectrum

The spectrum calculation may be configured by pressing the “Setup” button. The relevant options in “Setup MSTM”
window are:

“Calculation” mode could be extinction (default mode), absorbtion or scattering spectrum;

“min” – minimal wavelength (in nm),

“max” – maximal wavelength (in nm),

“count” – number of wavelength points. By default the spacing is 10 nm;

By default the averaging is performed. If “average over orientations” is unchecked the incidence beam angles must
be specified, i.e. “Azimuth angle” and “Polar angle”. In this case the spectra for two polarization cases (parallel and
orthogonal) will be obtained.

10 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

“Calculate” button of the main window runs MSTM binary in temporary directory (OS-dependent) and reads the
results.

“scale” – total outer multiplier.

save button – save extinction to column file.

plot button – plot without re-calculation (i.e. with new scale).

The plot controls are rendered by Matplotlib, and can depend on the library version. Generally, it is possible to zoom
region of interest and save graphic as a raster or vector image.

2.2. Manual: GUI 11

MSTM_studio Documentation, Release 1.0.2

MSTM near-field

Near field calculation should be enabled in “Setup MSTM” window by selection of “near field” mode. The adjustable
options are:

“Wavelength [nm]” – the wave length of the incident beam;

“Plot plane” – the 2D plane orientation - XY, YZ or ZX;

“Horiz”, “Vert”, “min”, “max” – the minimal and maximal coordinate on the plane, in nm;

“Grid step” – grid grain size, in nm;

“Offset” – displace of the plane from the origin, can be positive or negative, in nm.

Averaging over the incidence beam orientation can not be performed, therefore “average over orientation” box is
automatically unchecked. Orientation should be specified with “Azimuth angle” and “Polar angle” (in degrees).

Also, polarization of the beam should be fixed and specified with “Polarization angle”.

Alternatively, the averaging over polarization can be done by MSTM Studio mimicing the natural polarization. In
this case “average over polarization” box should be checked and number of polarization values (from 0 to 90 degrees)
to be averaged should be specified (12 by default).

Obtained data can be saved as image or text file in the same way as for spectrum.

12 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

2.2.3 Mie and other contributions

Plus button – add new contribution,

plot button – plot the sum of all contributions,

cross button – delete the last contribution in the list.

Each contribution has the type, a number of parameters and individual plot button.

Possible contributions and thier parameters:

2.2. Manual: GUI 13

MSTM_studio Documentation, Release 1.0.2

1. ConstBkg – constant background addition

1.1. shift

2. LinearBkg – linear background addition (see mstm_studio.contributions.LinearBackground)

2.1. shift

2.2. slope

3. LorentzBackground – background contribution mimicing UV-absorbtion of silica glass (see mstm_studio.
contributions.LorentzBackground) with center at ~ 250 nm.

3.1. scale

3.2. peak width Γ

4. Mie single – extinction of single sphere (see mstm_studio.contributions.MieSingleSphere)

4.2. scale

4.3. diameter (in nm)

4.4. material label

Note: the enviromnent material will be taken from Matrix field of Spheres panel.

5. Mie LN – extinction of ensemble of non-interacting spheres with sizes disributed accordint to Log-Normal (LN)
law (see mstm_studio.contributions.MieLognormSpheres). Actually, the cached version of the
class optimized for the fitting is used.

5.1. scale

5.2. LN parameter 𝜇

5.3. LN parameter 𝜎

The new plot button will show the size distribution:

Note: the window may require widening to show all the parameters and buttons.

6. Lorentz peak – Lorentzian function (see mstm_studio.contributions.LorentzPeak)

14 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

6.1. scale

6.2. center

6.3. width

7. Gauss peak – Gaussian function (see mstm_studio.contributions.GaussPeak)

7.1. scale

7.2. center

7.3. width

8. Au film – not implemented

9. bst-3Au/glass – not implemented

2.2.4 Fitting and constraints

Open file – select file with column-formatted data to fit

Plot button – visualize data and compare it with theory

Play button – start fitting

Stop button – interrupt fitting

ChiSq – shows the obtained fitting quality parameter 𝜒2 (see :class:mstm_studio.mstm_spectrum.SPR).

2.2. Manual: GUI 15

MSTM_studio Documentation, Release 1.0.2

Constraints button – open new window with constraints options

Empty constraints window:

Example of possible constraints for core-shell nanoparticle:

16 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

For details consult Constraints

2.3 Manual: Scripting

Use Python scripts for full control of calculations.

..note:: The easy way to point the MSTM binary in script is the usage of the os module:

import os
os.environ['MSTM_BIN'] = 'your path to mstm binary'

The default path is ‘~/bin/mstm.x’

2.3.1 Materials

The materials are characterized by refractive index, which is a square root (complex valued) of macroscopic dielectric
function. Generally, this should be the spectral function, i. e.

𝑛𝑐(𝜆) = 𝑛(𝜆) + 𝑖 · 𝑘(𝜆) =
√︀

𝜖1(𝜔) + 𝑖 · 𝜖2(𝜔)

so that

𝑛 =
√︀

(|𝜖| + 𝜖1)/2

𝑘 =
√︀

(|𝜖| − 𝜖1)/2

with ~𝜔 = 2𝜋~𝑐/𝜆.

2.3. Manual: Scripting 17

MSTM_studio Documentation, Release 1.0.2

Constant Material

The material with constant refreactive index can be specified as first constructor argument (file_name):

>>> from mstm_studio.mstm_spectrum import Material
>>> mat_glass = Material('1.5')
>>> mat_glass.get_n(500)
array(1.5)

Complex value can be supplied too:

>>> mat_lossy = Material('3+1j')
>>> mat_lossy.get_n(500)
array(3.)
>>> mat_lossy.get_k(500)
array(1.)

Also the predifned names can be used: air, water, glass.

Loading from file

The tabular data on refractive index is convinient to store in file. The header of the file required to have special labels:
lambda n k. The example file “etaGold.txt” can be found in directory “nk” of source distribution.

Assuming the file “etaGold.txt” is in the same directory where script is running, it can be loaded with

gold = Material('etaGold.txt')
fig, axs = gold.plot()
fig.savefig('loaded_gold.png', bbox_inches='tight')

Resulted plot

18 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

Note: The extending database of refractive indeces of materials <https://refractiveindex.info/>.

Material from numpy array

Material data can be specified directly by numpy (complex) array by passing nk or eps. Next examples shows loading
of Drude-like dielectric function:

from mstm_studio.mstm_spectrum import Material
import numpy as np

wls = np.linspace(300, 800, 51) # spectral region
omega = 1240. / wls # freq. domian

omega_p = 9. # plasma frequency, eV
gamma = 0.03 # damping, eV
Drude's dielectric function:
epsilon = 1 + omega_p**2 / (omega * (omega - 1j * gamma))

mat = Material('drude', eps=epsilon, wls=wls)

Material class members

class mstm_studio.mstm_spectrum.Material(file_name, wls=None, nk=None, eps=None)
Material class.

2.3. Manual: Scripting 19

https://refractiveindex.info/

MSTM_studio Documentation, Release 1.0.2

Use get_n() and get_k() methods to obtain values of refraction index at arbitraty wavelength (in nm).

Parameters:

file_name:

1. complex value, written in numpy format or as string;

2. one of the predefined strings (air, water, glass);

3. filename with optical constants.

File header should state lambda, n and k columns If either nk= n + 1j*k or eps = re + 1j*im arrays are
specified, then the data from one of them will be used and filename content will be ignored.

wls: float array array of wavelengths (in nm) used for data interpolation. If None then np.linspace(300,
800, 500) will be used.

plot(wls=None, fig=None, axs=None)
plot n and k dependence from wavelength

Parameters:

wls: float array array of wavelengths (in nm). If None then np.linspace(300, 800,
500) will be used.

fig: matplotlib figure

axs: matplotlib axes

Return:

filled/created fig and axs objects

Analytical formula for AuAg

Silver, gold and thier alloy materials can be specified using analytical expression proposed in the study [Rioux2014].
Example for Au:Ag = 1:2 alloy:

from mstm_studio.alloy_AuAg import AlloyAuAg

au1ag2 = AlloyAuAg(x_Au=1./3)
fig, axs = au1ag2.plot()
fig.savefig('mat_au1ag2.png', bbox_inches='tight')

Resulted plot

20 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

class mstm_studio.alloy_AuAg.AlloyAuAg(x_Au)
Material class for AuAg alloys.

Use get_n() and get_k() to obtain values of refraction indexes (real and imaginary) at arbitraty wavelength (in
nm) by model and code from Rioux et al doi:10.1002/adom.201300457

Parameters:

x_Au: float fraction of gold

2.3.2 Simple functions and Mie theory

Example

The example how to obtain contribution to the extinction from Log-Normally distributed spheres. Other contributions
are evaluated in similar way.

from mstm_studio.contributions import MieLognormSpheres
from mstm_studio.alloy_AuAg import AlloyAuAg
import numpy as np

mie = MieLognormSpheres(name='mie', wavelengths=np.linspace(300,800,51))
mie.set_material(AlloyAuAg(x_Au=1), 1.5) # golden sphere in glass

values = [1, 1.5, 0.5] # scale, mu, sigma
fig, _ = mie.plot(values)
fig.savefig('mie_contrib.png', bbox_inches='tight')

2.3. Manual: Scripting 21

MSTM_studio Documentation, Release 1.0.2

mie.MAX_DIAMETER_TO_PLOT = 20 # 100 nm is by default
fig, _ = mie.plot_distrib(values)
fig.savefig('mie_distrib.png', bbox_inches='tight')

22 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

Classes

Contributions to UV/vis extinction spectra other then obtained from MSTM.

class mstm_studio.contributions.Contribution(wavelengths=[], name=’ExtraContrib’)
Abstract class to include contributions other then calculated by MSTM. All lightweight calculated contribtions
(constant background, lorentz and guass peaks, Mie, etc.) should enhirit from it.

Parameters:

wavelengths: list or numpy array wavelengths in nm

name: string optional label

calculate(values)
This method should be overriden in child classes.

Parameters:

values: list of control parameters

Return:

numpy array of contribution values at specified wavelengths

plot(values, fig=None, axs=None)
plot contribution

Parameters:

values: list of parameters

2.3. Manual: Scripting 23

MSTM_studio Documentation, Release 1.0.2

fig: matplotlib figure

axs: matplotlib axes

Return:

filled/created fig and axs objects

set_wavelengths(wavelengths)
Modify wavelengths

class mstm_studio.contributions.ConstantBackground(wavelengths=[],
name=’ExtraContrib’)

Constant background contribution 𝑓(𝜆) = 𝑏𝑘𝑔.

Parameters:

wavelengths: list or numpy array wavelengths in nm

name: string optional label

calculate(values)
Parameters:

values: [bkg]

Return:

numpy array

class mstm_studio.contributions.LinearBackground(wavelengths=[],
name=’ExtraContrib’)

Two-parameter background 𝑓(𝜆) = 𝑎 · 𝜆 + 𝑏.

Parameters:

wavelengths: list or numpy array wavelengths in nm

name: string optional label

calculate(values)
Parameters:

values: list of control parameters scale, mu and Gamma

Return:

numpy array

class mstm_studio.contributions.LorentzBackground(wavelengths=[],
name=’ExtraContrib’)

Lorentz peak in background. Peak center is fixed.

𝐿(𝜆) =
𝑠𝑐𝑎𝑙𝑒

(𝜆− 𝑐𝑒𝑛𝑡𝑒𝑟)2 + Γ2

Parameters:

wavelengths: list or numpy array wavelengths in nm

name: string optional label

calculate(values)
This method should be overriden in child classes.

Parameters:

values: list of control parameters

24 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

Return:

numpy array of contribution values at specified wavelengths

class mstm_studio.contributions.LorentzPeak(wavelengths=[], name=’ExtraContrib’)
Lorentz function

𝐿(𝜆) =
𝑠𝑐𝑎𝑙𝑒

(𝜆− 𝜇)2 + Γ2

Parameters:

wavelengths: list or numpy array wavelengths in nm

name: string optional label

calculate(values)
Parameters:

values: list of control parameters scale, mu and Gamma

Return:

numpy array

class mstm_studio.contributions.GaussPeak(wavelengths=[], name=’ExtraContrib’)
Gauss function

𝐺(𝜆) = 𝑠𝑐𝑎𝑙𝑒 · exp

(︂
− (𝜆− 𝜇)2

2𝜎2

)︂
Parameters:

wavelengths: list or numpy array wavelengths in nm

name: string optional label

calculate(values)
Parameters:

values: list of control parameters scale, mu and sigma

Return:

numpy array

class mstm_studio.contributions.MieSingleSphere(wavelengths=[],
name=’ExtraContrib’)

Mie contribution from single sphere.

Details are widely discusses, see, for example [Kreibig_book1995]

Parameters:

wavelengths: list or numpy array wavelengths in nm

name: string optional label

calculate(values)
Parameters:

values: list of control parameters scale, diameter

Return:

extinction efficiency array of Mie sphere

2.3. Manual: Scripting 25

MSTM_studio Documentation, Release 1.0.2

set_material(material, matrix=1.0)
Define the material of sphere and environment

Parameters:

material: Material object material of the sphere

matrix: float, string or Material object material of the environment

Return:

True if properties were changed, False - otherwise.

class mstm_studio.contributions.MieLognormSpheres(wavelengths=[],
name=’ExtraContrib’)

Mie contribution from an ensemble of spheres with sizes distributed by Log-Normal law

Parameters:

wavelengths: list or numpy array wavelengths in nm

name: string optional label

calculate(values)
Parameters:

values: list of control parameters scale, mu and sigma

Return:

Mie extinction efficiency of log-normally distributed spheres

lognorm(x, mu, sigma)
The shape of Log-Normal distribution:

𝐿𝑁(𝐷) =
1

𝐷𝜎
√

2𝜋
exp

(︂
− (log(𝐷) − 𝜇)2

2𝜎2

)︂

plot_distrib(values, fig=None, axs=None)
Plot size distribution

Parameters:

values: list of control parameters

fig: matplotlib figure

axs: matplotlib axes

Return:

filled/created fig and axs objects

set_material(material, matrix=1.0)
Define the material of sphere and environment

Parameters:

material: Material object material of the sphere

matrix: float, string or Material object material of the environment

Return:

True if properties were changed, False - otherwise.

26 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

class mstm_studio.contributions.MieLognormSpheresCached(wavelengths=[],
name=’ExtraContrib’)

Mie contribution from an ensemble of spheres with sizes distributed by Lognormal law.

Cached version - use it to speed-up fitting.

Parameters:

wavelengths: list or numpy array wavelengths in nm

name: string optional label

calculate(values)
Parameters:

values: list of control parameters scale, mu and sigma

Return:

Mie extinction efficiency of log-normally distributed spheres

lognorm(x, mu, sigma)
The shape of Log-Normal distribution:

𝐿𝑁(𝐷) =
1

𝐷𝜎
√

2𝜋
exp

(︂
− (log(𝐷) − 𝜇)2

2𝜎2

)︂

2.3.3 Spheres setup

MSTM code requires explicit setup of the positons and sizes of spheres. There are several classes designed in MSTM-
studio to help this setup.

Example: particles aggregate

Script to construct spheres with random sizes placed on a regular grid:

from mstm_studio.mstm_spectrum import LogNormalSpheres
from mstm_studio.alloy_AuAg import AlloyAuAg

spheres = LogNormalSpheres(9, 10.0, 0.2, 5., AlloyAuAg(1.))
while spheres.check_overlap():

print('spheres are overlapping, regenerating...')
spheres = LogNormalSpheres(9, 10.0, 0.2, 5., AlloyAuAg(1.))

print(spheres.a)

Sample output:

Box size estimated as: 77.0 nm
Desired number of particles: 9
Number of particles in a box: 8
Resulted number of particles: 8
spheres are overlapping, regenerating...
Box size estimated as: 77.0 nm
Desired number of particles: 9
Number of particles in a box: 8
Resulted number of particles: 8
[9.307773 8.61185299 9.92867988 8.84140858 9.87175352 8.71090184

9.71505038 12.40459688]

2.3. Manual: Scripting 27

MSTM_studio Documentation, Release 1.0.2

Classes

class mstm_studio.mstm_spectrum.Spheres
Abstract collection of spheres

Object fields:

N: int number of spheres

x, y, z: numpy arrays coordinates of spheres centers

a: list or arrray spheres radii

materials: numpy array Material objects or strings

Creates empty collection of spheres. Use child classes for non-empty!

append(sphere)
Append by data from SingleSphere object

Parameter:

sphere: SingleSphere

check_overlap(eps=0.001)
Check if spheres are overlapping

delete(i)
Delete element with index i

extend(spheres)
Append by all items from object spheres

get_center(method=”)
calculate center of masses in assumption of uniform density

Parameter:

method: string {‘’|’mass’} If method == ‘mass’ then center of masses (strictly speaking, vol-
umes) is calculated. Otherwise all spheres are averaged evenly.

load(filename, mat_filename=’etaGold.txt’, units=’nm’)
Reads spheres coordinates and radii from file.

Parameters:

filename: string file to be read from

mat_filename: string all spheres will have this material (sphere-material storaging is not yet
implemented)

units: string {‘mum’|’nm’} distance units. If ‘mum’ then coordinated will be scaled (x1000)

save(filename)
Saves spheres coordinates and radii to file.

Parameter:

filename: string

class mstm_studio.mstm_spectrum.SingleSphere(x, y, z, a, mat_filename=’etaGold.txt’)
Collection of spheres with only one sphere

Parameters:

x, y, z: float coordinates of spheres centers

28 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

a: float spheres radii

mat_filename: string, float, complex value or Material object material specification

class mstm_studio.mstm_spectrum.ExplicitSpheres(N=0, Xc=[], Yc=[], Zc=[], a=[],
mat_filename=’etaGold.txt’)

Create explicitely defined spheres

Parameters:

N: int number of spheres

Xc, Yc, Zc: lists or numpy arrays coordinates of the spheres centers

a: list or numpy array radii of the spheres

mat_filename: string, list of strings, Material or list of Materials specification of spheres material

Note: If only first array Xc is supplied, than all data is assumed zipped in it, i.e.: Xc = [X1, Y1, Z1, a1, . . . ,
XN, YN, ZN, aN]

class mstm_studio.mstm_spectrum.LogNormalSpheres(N, mu, sigma, d,
mat_filename=’etaGold.txt’)

The set of spheres positioned on the regular mesh with random Log-Normal distributed sizes. In the case
overlapping of the spheres the sizes should(?) be regenerated.

Parameters:

N: int number of spheres

mu, sigma: floats parameters of Log-Normal distribution

d: float average empty space between spheres centers

mat_filename: string or Material object specification of spheres material

2.3.4 MSTM run

T-matrix formalism prposed by Waterman [Khlebtsov2013] is one of the generalization of Mie theory towards the mul-
tiple spherical targets. The Multi Sphere T-matrix (MSTM) Fortran code is developed by Mischnko and Mackowsky
[Mackowski2011]. The SPR class implements functionality required for extinction spectra calculation in visible range.
Note, that Fortran code have wider functionality, including near field calculations, angle-dependent calculations, etc,
which are not currently implemented. Consult the MSTM website <http://eng.auburn.edu/users/dmckwski/scatcodes/>
for details.

Example: core-shell particle

Absorbtion efficiency (normalized cross-section) of gold-silver core-shell particle.

from mstm_studio.alloy_AuAg import AlloyAuAg
from mstm_studio.mstm_spectrum import SPR, ExplicitSpheres
import matplotlib.pyplot as plt
import numpy as np

wls = np.linspace(300, 800, 100) # define wavelengths
spr = SPR(wls) # create SPR object
spr.environment_material = 'glass' # set matrix

spheres = ExplicitSpheres(2, [0,0,0,10,0,0,0,12], mat_filename=[AlloyAuAg(1.),
→˓AlloyAuAg(0.)])

(continues on next page)

2.3. Manual: Scripting 29

http://eng.auburn.edu/users/dmckwski/scatcodes/

MSTM_studio Documentation, Release 1.0.2

(continued from previous page)

spr.set_spheres(spheres)
spr.set_incident_field(fixed=False)
spr.simulate()

plt.plot(spr.wavelengths, spr.absorbtion)
plt.xlabel('Wavelegth, nm')
plt.ylabel('Absorbtion efficiency, a.u.')
plt.savefig('core-shell_mstm.png', bbox_inches='tight')

Class

class mstm_studio.mstm_spectrum.SPR(wavelengths)
Class for calculation of surface plasmin resonance (SPR), running MSTM external code. The MSTM executable
should be set in MSTM_BIN environment variable. Default is ~/bin/mstm.x

Parameter:

wavelengths: numpy array Wavelegths in nm

plot()
Plot results with matplotlib.pyplot

set_incident_field(fixed=False, azimuth_angle=0.0, polar_angle=0.0, polarization_angle=0.0)
Set incident wave orientation and polarization

Parameters:

30 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

fixed: bool True - fixed orientation and polarized light False - average over all orientations and
polarizations

azimuth_angle, polar_angle: float (degrees)

polarization_angle: float (degrees) !sensible only for near field calculation! polarization angle
relative to the k-z palne. 0 - X-polarized, 90 - Y-polarized (if azimuth and polar angles are
zero).

simulate(outfn=None)
Start the simulation.

The inpuit parameters are read from object dictionary paramDict. Routine will prepare input file script-
Params.inp in the temporary folder, which will be deleted after calculation.

After calculation the result depends on the polarization setting. For polarized light the object fields will be
filled:

extinction_par, extinction_ort, absorbtion_par, absorbtion_ort, scattering_par, scattering_ort.

While for orientation-averaged calculation just:

extinction, absorbtion and scattering.

write(filename)
Save results to file

2.3.5 Visualization of near field

MSTM code can be used to calculate the distribution of the near (or local) field. The field is calculated on a rectangular
region, specified by input (nearfield.NearField.set_plane()). Currently, only magnititude of electric
field |𝐸|2 can be visualized.

Example: field distribution near two particles

Two silver spheres with radii 5 and 3 nm are placed at 0,0,0 and 0,0,11. Incident beam with wavelength 385 nm is
directed by Z axis and have X polzarization.

from mstm_studio.nearfield import NearField
from mstm_studio.mstm_spectrum import ExplicitSpheres
from mstm_studio.alloy_AuAg import AlloyAuAg

mat = AlloyAuAg(x_Au=0.0) # silver material
nf = NearField(wavelength=385) # near the resonance
nf.environment_material = 1.5 # glass matrix
nf.set_plane(plane='xz', hmin=-10, hmax=20, vmin=-15, vmax=15, step=0.25)

spheres = ExplicitSpheres(2, [0, 0, 0, 5, 0, 0, 11, 3],
mat_filename=2*[mat])

nf.set_spheres(spheres)

nf.simulate()

nf.plot()

Resulting image

2.3. Manual: Scripting 31

MSTM_studio Documentation, Release 1.0.2

Class

class mstm_studio.nearfield.NearField(wavelength)
Calculate field distribution map at fixed wavelength

plot(fig=None, axs=None, caxs=None)
Show 2D field distribution Parameters:

fig: matplotlib figure axs: matplotlib axes caxs: matplotlib axes for colorbar

Return: filled/created fig and axs objects

set_plane(plane=’zx’, hmin=-10.0, hmax=10.0, vmin=-10.0, vmax=10.0, step=1.0, offset=0.0)
Determine the plane and grid for near field computation.

plane: one of ‘yz’|’zx’|’xy’ hmin, hmax, vmin, vmax: horizontal and vertical sizes step: size of the grid
grain offset: shift of the plane

simulate()
Run MSTM code to produce 2D map of field distribution.

write(filename)
save field data to text file

32 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

2.3.6 Non-spherical particles

T-matrix formulation allows to perform computational efficient calculations for single axially-symmtric objects.
Currently supported only spheroid shape (rotational ellipsoid) using external library ScatterPy <https://github.com/
TCvanLeth/ScatterPy>. The details can be found in [Mishchenko1998].

Example

Calculation of extinction for oblate spheroid with aspect ratio of 𝛼 = 𝑎/𝑐 = 1.5 . The size is specified by diamter
𝑎𝑒𝑓𝑓 of equivalent-volume sphere.

The spheroid size can be derived as

𝑎 = 𝑎𝑒𝑓𝑓𝛼
1/3

𝑐 = 𝑎/𝛼

from mstm_studio.alloy_AuAg import AlloyAuAg
from mstm_studio.contrib_spheroid import SpheroidSP
import numpy as np

wls = np.linspace(300, 800, 51) # range for calculation, in nm
SIZE = 20 # nm, particle diameter
ASPECT = 1.5 # a / c = horiz. axis / rot. axis

sph = SpheroidSP(wavelengths=wls) # create object
sph.set_material(AlloyAuAg(x_Au=1), 1.5) # particle and matrix refr. ind.

2.3. Manual: Scripting 33

https://github.com/TCvanLeth/ScatterPy
https://github.com/TCvanLeth/ScatterPy

MSTM_studio Documentation, Release 1.0.2

fig, axs = sph.plot_shape([1, SIZE, ASPECT])
fig.savefig('spheroid_shape.png', bbox_inches='tight')

ext_sph = sph.calculate([1, SIZE, ASPECT])
fig, axs = sph.plot([1, SIZE, ASPECT]) # scale, diameter, aspect
fig.savefig('spheroid_ext.png', bbox_inches='tight')

Classes

Contributions to optical extinction spectra from axial-symmetric particles. Currently, spheroids.

class mstm_studio.contrib_spheroid.SpheroidSP(wavelengths=[], name=’ExtraContrib’)
Extinction from spheroid calculated in T-matrix approach using external library ScatterPy <https://github.com/
TCvanLeth/ScatterPy>

Parameters:

wavelengths: list or numpy array wavelengths in nm

name: string optional label

calculate(values)
Parameters:

values: list of parameters scale, size and aspect Scale is an arbitrary multiplier. Size parame-
ter is the radius of equivelent-volume sphere. The aspect ratio is “the ratio of horizontal to
rotational axes” according to scatterpy/shapes.py

Return:

34 Chapter 2. Contents

https://github.com/TCvanLeth/ScatterPy
https://github.com/TCvanLeth/ScatterPy

MSTM_studio Documentation, Release 1.0.2

extinction efficiency array for spheroid particle

plot_shape(values, fig=None, axs=None)
Plot shape profile. Spatial shape is achieved by rotation over vertical axis.

Parameters:

values: list of control parameters scale, size and aspect

fig: matplotlib figure

axs: matplotlib axes

Return:

filled/created fig and axs objects

2.3.7 Fitting

Fitting of experimental spectra is a powerful tool for study of plasmonic nanoparticles. Fitting with Mie theory is
routinely used to provide information about particle sizes, but fitting with MSTM can solve even agglomerates (packs)
of nanoparticles, where Mie theory is not applicable, see [Avakyan2017] for example. Another application is the fitting
with core-shell or multi-layered particles.

The MSTM-studio used hard-coded target (penalty) function which is minimized during fitting (ChiSq):

𝜒2 =
∑︁
𝑖

(︁
𝑦(fit)
𝑖 − 𝑦(dat)

𝑖

)︁2

,

where index i enumerates wavelengths.

Example: fit with Mie theory

Exampels experimental file, included in distribution, is the extinction spectra of gold particles laser-impregnated in
glass, synthesized and studied by Maximilian Heinz [Avakyan2017].

from mstm_studio.alloy_AuAg import AlloyAuAg
from mstm_studio.contributions import LinearBackground, MieLognormSpheresCached
from mstm_studio.fit_spheres_optic import Fitter

fitter = Fitter(exp_filename='experiment.dat') # load experiment from tabbed
→˓file
fitter.set_extra_contributions(

[LinearBackground(fitter.wls), # wavelengths from experiment
MieLognormSpheresCached(fitter.wls, 'LN Mie')], # cached version for faster

→˓fittting
[0.02, 0.0001, 0.1, 2.0, 0.4]) # initial values for a, b, C,

→˓mu, sigma
fitter.extra_contributions[1].set_material(AlloyAuAg(1.), 1.5) # gold particles in
→˓glass
fitter.set_spheres(None) # no spheres - no slow MSTM runs

run fit (takes ~20 seconds on 2GHz CPU)
fitter.run()

fitter.report_result()

plot results

(continues on next page)

2.3. Manual: Scripting 35

MSTM_studio Documentation, Release 1.0.2

(continued from previous page)

import matplotlib.pyplot as plt
plt.plot(fitter.wls, fitter.exp, 'ro', label='exp.')
plt.plot(fitter.wls, fitter.calc, 'b-', label='fit')
plt.xlabel('Wavelength, nm')
plt.ylabel('Exctinction, a.u.')
plt.legend()
plt.savefig('fit_by_Mie.png', bbox_inches='tight')

Output (final part):

ChiSq: 0.000219
Optimal parameters

ext00: 0.035177 (Varied:True)
ext01: -0.000049 (Varied:True)
ext02: 0.007908 (Varied:True)
ext03: 4.207724 (Varied:True)
ext04: 0.284066 (Varied:True)
scale: 7030.322097 (Varied:True)

The low value of ChiSq and inspecting of agreement between theoretical and experimental curves are indicate on
acceptable fitting. The names of fitting parameters are explained in Constraints subsection (see Parameter). In this
example the ext00 and ext01 are the parameters a and b of linear contribution, ext02 is a scale multiplier for Mie contri-
bution, ext03 and ext04 correspond to mu and sigma parameters of Log-Normal distribution (see mstm_spectrum.
MieLognormSpheres). The last parameter, the common scale multiplier 100 % correlates with ext02, resulting in
spurious absolute values. If needed, the particle concentration can be estimated from thier product 𝑠𝑐𝑎𝑙𝑒 × 𝑒𝑥𝑡02 or
by constraining one of them during fitting.

36 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

Fitter class

class mstm_studio.fit_spheres_optic.Fitter(exp_filename, wl_min=300, wl_max=800,
wl_npoints=51, extra_contributions=None,
plot_progress=False)

Class to perform fit of experimental Exctinction spectrum

Field:

tolerance: float stopping criterion, default is 1e-4

Parameters:

exp_filename: str name of file with experimental data

wl_min, wl_max: float wavelength bounds for fitting (in nm).

wl_npoints: int number of wavelengths where spectra will be calcualted and compared.

extra_contributions: list of Contribution objects If None, then ConstantBackground will be used.
Assuming that first element is a background. If you don’t want any extra contribution, set to
empty list [].

plot_progress: bool Show fitting progress using matplotlib. Should be turned off when run on par-
allel cluster without gui.

add_constraint(cs)
Adds constraints on the parameters. Usefull for the case of core-shell and layered structures.

Parameter:

cs: Contraint object or list of Contraint objects

get_extra_contributions()
Return a list of current extra contributions to the spectrum

report_freedom()
Returns string with short summary before fitting

report_result(msg=None)
Returns string with short summary of fitting results

run(maxsteps=400)
Start fitting.

Parameters:

maxsteps: int limits number of steps performed

set_callback(func)
Set callback function which will be called on each step of outer optimization loop.

Parameter:

func: function(values) where values – list of values passed from optimization routine

set_extra_contributions(contributions, initial_values=None)
Add extra contributions and initialize corresponding params.

Parameters:

contributions: list of Contribution objests

initial_values: float array

set_matrix(material=’AIR’)
set refraction index of matrix material

2.3. Manual: Scripting 37

MSTM_studio Documentation, Release 1.0.2

material [{‘AIR’|’WATER’|’GLASS’} or float] the name of material or refraction index value.

set_spheres(spheres)
Specify the spheres to be fit.

Paramerer:

spheres: list of mstm_spectrum.Sphere objects If None then MSTM will not be run.

2.3.8 Constraints

The constraints allow to speed-up or direct the fitting. Thier setup requires specification of variable names, which are
described in Parameter class documentation:

class mstm_studio.fit_spheres_optic.Parameter(name, value=1, min=None, max=None,
internal_loop=False)

Class for parameter object used for storage of parameter’s name, value and variation limits.

Parameter naming conventions:

scale - outer common multiplier

ext%i - extra parameter, like background, peaks or Mie contributions

a%i - sphere radius

x%i, y%i, z%i - coordinates of sphere center

where %i is a number (0, 1, 2, . . .)

Parameters:

name: string name of parameter used for constraints etc

value: float initial value of parameter

min, max: float bounds for parameter variation (optional)

internal_loop [bool] if True the parameter will be allowed to vary in internal (fast) loop, which does
not require MSTM recalculation. Note: this flag will be removed in future.

varied: bool if True – will be changed during fit

Example: fit by core-shell

Fit the same experiment as above, but using model of core-shell particle, just to illustrate the technique.

from mstm_studio.alloy_AuAg import AlloyAuAg
from mstm_studio.contributions import LinearBackground, MieLognormSpheresCached
from mstm_studio.mstm_spectrum import ExplicitSpheres, Profiler
from mstm_studio.fit_spheres_optic import Fitter, FixConstraint, ConcentricConstraint

fitter = Fitter(exp_filename='experiment.dat') # load experiment from tabbed
→˓file
fitter.set_extra_contributions(

[LinearBackground(fitter.wls)], # wavelengths from experiment
[0.02, 0.0001]) # initial values for a, b

spheres = ExplicitSpheres(2, [0,0,0,10,0,0,0,12], mat_filename=[AlloyAuAg(1.),
→˓AlloyAuAg(0.)])
fitter.set_spheres(spheres) # core-shell Au@Ag particle

(continues on next page)

38 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

(continued from previous page)

fitter.set_matrix(1.5) # in glass

fitter.add_constraint(ConcentricConstraint(0, 1)) # 0 -> 1
fitter.add_constraint(FixConstraint('x00'))
fitter.add_constraint(FixConstraint('y00'))
fitter.add_constraint(FixConstraint('z00'))

run fit (takes ~200 seconds on 2GHz CPU)
with Profiler():

fitter.run()

fitter.report_result()

plot results
import matplotlib.pyplot as plt
plt.plot(fitter.wls, fitter.exp, 'ro', label='exp.')
plt.plot(fitter.wls, fitter.calc, 'b-', label='fit')
plt.xlabel('Wavelength, nm')
plt.ylabel('Exctinction, a.u.')
plt.legend()
plt.savefig('fit_by_core-shell.png', bbox_inches='tight')

Output (final part):

ChiSq: 0.002354
Optimal parameters

a00: 1.284882 (Varied:True)
a01: 1.958142 (Varied:True)
ext00: 0.186312 (Varied:True)
ext01: -0.000247 (Varied:True)
scale: -0.063814 (Varied:True)
x00: 0.000000 (Varied:False)
x01: 0.000000 (Varied:False)
y00: 0.000000 (Varied:False)
y01: 0.000000 (Varied:False)
z00: 0.000000 (Varied:False)
z01: 0.000000 (Varied:False)

2.3. Manual: Scripting 39

MSTM_studio Documentation, Release 1.0.2

The fiting quality demonstrated by parameter ChiSq is ~10 times worse comparing when used the ensemble of non-
interacting gold particles. The figure shows unacceptable fitting quality too.

Constraints classes

class mstm_studio.fit_spheres_optic.Constraint
Abstract constraint class. All other should inherit from it.

apply(params)
Modify the params dict according to given constranint algorithm.

Note: Abstract method!

class mstm_studio.fit_spheres_optic.FixConstraint(prm, value=None)
Fix value of parameter with name prm to value.

Parameters:

prm: string parameter name

value: float if None than initial value will be used.

apply(params)
Apply fix constraint

class mstm_studio.fit_spheres_optic.EqualityConstraint(prm1, prm2)
Fix two parameters with names prm1 and prm2 being equal

apply(params)
Apply equality constraint

40 Chapter 2. Contents

MSTM_studio Documentation, Release 1.0.2

class mstm_studio.fit_spheres_optic.ConcentricConstraint(i1, i2)
Two spheres with common centers.

i1 and i2 – indexes of spheres

apply(params)
Apply concentric constraint

class mstm_studio.fit_spheres_optic.RatioConstraint(prm1, prm2, ratio=1)
Maintain ratio of two variables, prm1/prm2 = ratio

apply(params)
Apply Ratio constraint

set_ratio(ratio)
Set ratio of 𝑝𝑟𝑚1/𝑝𝑟𝑚2 = 𝑟𝑎𝑡𝑖𝑜.

2.3. Manual: Scripting 41

MSTM_studio Documentation, Release 1.0.2

42 Chapter 2. Contents

CHAPTER 3

Contacts

GitHub: https://github.com/lavakyan/mstm-spectrum

E-mail: laavakyan_at_sfedu.ru

43

https://github.com/lavakyan/mstm-spectrum

MSTM_studio Documentation, Release 1.0.2

44 Chapter 3. Contacts

Bibliography

[Rioux2014] D. Rioux, S. Vallières, S. Besner, P. Muñoz, E. Mazur, and M. Meunier, “An Analytic Model for
the Dielectric Function of Au, Ag, and their Alloys” Adv. Opt. Mater. (2014) 2 176-182 <http:
//dx.doi.org/10.1002/adom.201300457>

[Kreibig_book1995] U. Kreibig, M. Vollmer, “Optical Properties of Metal Clusters” (1995) 553

[Khlebtsov2013] N. Khlebtsov, “T-matrix method in plasmonics: An overview” J. Quant. Spectrosc. Radiat. Trans-
fer (2013) 123, 184-217, Peter C. Waterman and his scientific legacy

[Mackowski2011] D. Mackowski, M. Mishchenko,”A Multiple Sphere T-matrix Fortran Code for Use on Parallel
Computer Clusters” J. Quant. Spectrosc. Radiat. Transfer (2011) 112, 2182–2192

[Mishchenko1998] M. Mishchenko, L. Travis, “Capabilities and limitations of a current FORTRAN implementation
of the T-matrix method for randomly oriented, rotationally symmetric scatterers ” (1998) 309

[Avakyan2017] L. Avakyan, M. Heinz, A. Skidanenko, K. Yablunovskiy, J. Ihlemann, J. Meinertz, C. Patzig, M.
Dubiel, L. Bugaev “Insight on agglomerates of gold nanoparticles in glass based on surface plasmon
resonance spectrum: Study by multi-spheres T-matrix method” J. Phys.: Condens. Matter (2018) 30,
045901-045909 <https://doi.org/10.1088/1361-648X/aa9fcc>

45

http://dx.doi.org/10.1002/adom.201300457
http://dx.doi.org/10.1002/adom.201300457
https://doi.org/10.1088/1361-648X/aa9fcc

MSTM_studio Documentation, Release 1.0.2

46 Bibliography

Python Module Index

m
mstm_studio.contrib_spheroid, 34
mstm_studio.contributions, 23

47

MSTM_studio Documentation, Release 1.0.2

48 Python Module Index

Index

A
add_constraint() (mstm_studio.fit_spheres_optic.Fitter

method), 37
AlloyAuAg (class in mstm_studio.alloy_AuAg), 21
append() (mstm_studio.mstm_spectrum.Spheres

method), 28
apply() (mstm_studio.fit_spheres_optic.ConcentricConstraint

method), 41
apply() (mstm_studio.fit_spheres_optic.Constraint

method), 40
apply() (mstm_studio.fit_spheres_optic.EqualityConstraint

method), 40
apply() (mstm_studio.fit_spheres_optic.FixConstraint

method), 40
apply() (mstm_studio.fit_spheres_optic.RatioConstraint

method), 41

C
calculate() (mstm_studio.contrib_spheroid.SpheroidSP

method), 34
calculate() (mstm_studio.contributions.ConstantBackground

method), 24
calculate() (mstm_studio.contributions.Contribution

method), 23
calculate() (mstm_studio.contributions.GaussPeak

method), 25
calculate() (mstm_studio.contributions.LinearBackground

method), 24
calculate() (mstm_studio.contributions.LorentzBackground

method), 24
calculate() (mstm_studio.contributions.LorentzPeak

method), 25
calculate() (mstm_studio.contributions.MieLognormSpheres

method), 26
calculate() (mstm_studio.contributions.MieLognormSpheresCached

method), 27
calculate() (mstm_studio.contributions.MieSingleSphere

method), 25
check_overlap() (mstm_studio.mstm_spectrum.Spheres

method), 28
ConcentricConstraint (class in

mstm_studio.fit_spheres_optic), 40
ConstantBackground (class in

mstm_studio.contributions), 24
Constraint (class in mstm_studio.fit_spheres_optic),

40
Contribution (class in mstm_studio.contributions),

23

D
delete() (mstm_studio.mstm_spectrum.Spheres

method), 28

E
EqualityConstraint (class in

mstm_studio.fit_spheres_optic), 40
ExplicitSpheres (class in

mstm_studio.mstm_spectrum), 29
extend() (mstm_studio.mstm_spectrum.Spheres

method), 28

F
Fitter (class in mstm_studio.fit_spheres_optic), 37
FixConstraint (class in

mstm_studio.fit_spheres_optic), 40

G
GaussPeak (class in mstm_studio.contributions), 25
get_center() (mstm_studio.mstm_spectrum.Spheres

method), 28
get_extra_contributions()

(mstm_studio.fit_spheres_optic.Fitter method),
37

L
LinearBackground (class in

mstm_studio.contributions), 24
load() (mstm_studio.mstm_spectrum.Spheres method),

28

49

MSTM_studio Documentation, Release 1.0.2

lognorm() (mstm_studio.contributions.MieLognormSpheres
method), 26

lognorm() (mstm_studio.contributions.MieLognormSpheresCached
method), 27

LogNormalSpheres (class in
mstm_studio.mstm_spectrum), 29

LorentzBackground (class in
mstm_studio.contributions), 24

LorentzPeak (class in mstm_studio.contributions), 25

M
Material (class in mstm_studio.mstm_spectrum), 19
MieLognormSpheres (class in

mstm_studio.contributions), 26
MieLognormSpheresCached (class in

mstm_studio.contributions), 26
MieSingleSphere (class in

mstm_studio.contributions), 25
mstm_studio.contrib_spheroid (module), 34
mstm_studio.contributions (module), 23

N
NearField (class in mstm_studio.nearfield), 32

P
Parameter (class in mstm_studio.fit_spheres_optic), 38
plot() (mstm_studio.contributions.Contribution

method), 23
plot() (mstm_studio.mstm_spectrum.Material

method), 20
plot() (mstm_studio.mstm_spectrum.SPR method), 30
plot() (mstm_studio.nearfield.NearField method), 32
plot_distrib() (mstm_studio.contributions.MieLognormSpheres

method), 26
plot_shape() (mstm_studio.contrib_spheroid.SpheroidSP

method), 35

R
RatioConstraint (class in

mstm_studio.fit_spheres_optic), 41
report_freedom() (mstm_studio.fit_spheres_optic.Fitter

method), 37
report_result() (mstm_studio.fit_spheres_optic.Fitter

method), 37
run() (mstm_studio.fit_spheres_optic.Fitter method),

37

S
save() (mstm_studio.mstm_spectrum.Spheres method),

28
set_callback() (mstm_studio.fit_spheres_optic.Fitter

method), 37

set_extra_contributions()
(mstm_studio.fit_spheres_optic.Fitter method),
37

set_incident_field()
(mstm_studio.mstm_spectrum.SPR method), 30

set_material() (mstm_studio.contributions.MieLognormSpheres
method), 26

set_material() (mstm_studio.contributions.MieSingleSphere
method), 25

set_matrix() (mstm_studio.fit_spheres_optic.Fitter
method), 37

set_plane() (mstm_studio.nearfield.NearField
method), 32

set_ratio() (mstm_studio.fit_spheres_optic.RatioConstraint
method), 41

set_spheres() (mstm_studio.fit_spheres_optic.Fitter
method), 38

set_wavelengths()
(mstm_studio.contributions.Contribution
method), 24

simulate() (mstm_studio.mstm_spectrum.SPR
method), 31

simulate() (mstm_studio.nearfield.NearField
method), 32

SingleSphere (class in
mstm_studio.mstm_spectrum), 28

Spheres (class in mstm_studio.mstm_spectrum), 28
SpheroidSP (class in mstm_studio.contrib_spheroid),

34
SPR (class in mstm_studio.mstm_spectrum), 30

W
write() (mstm_studio.mstm_spectrum.SPR method),

31
write() (mstm_studio.nearfield.NearField method), 32

50 Index

	Features
	Contents
	Installation
	Manual: GUI
	Manual: Scripting

	Contacts
	Bibliography
	Python Module Index
	Index

